Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Mayo Clin Proc ; 98(7): 1099, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2310306

Subject(s)
COVID-19 , Humans , Hormones , SARS-CoV-2
2.
J Clin Endocrinol Metab ; 107(10): 2777-2783, 2022 09 28.
Article in English | MEDLINE | ID: covidwho-2291794

ABSTRACT

CONTEXT: Autosomal recessive hypophosphatemic rickets (ARHR) are rare, heritable renal phosphate-wasting disorders that arise from overexpression of the bone-derived phosphaturic hormone fibroblast growth factor 23 (FGF23) leading to impaired bone mineralization (rickets and osteomalacia). Inactivating mutations of Dentin matrix protein 1 (DMP1) give rise to ARHR type 1 (ARHR1). Short stature, prominent bowing of the legs, fractures/pseudofractures, and severe enthesopathy are prominent in this patient population. Traditionally, treatment consists of oral phosphate replacement and the addition of calcitriol but this approach is limited by modest efficacy and potential renal and gastrointestinal side effects. OBJECTIVE: The advent of burosumab (Crysvita), a fully humanized monoclonal antibody to FGF23 for the treatment of X-linked hypophosphatemia and tumor-induced osteomalacia, offers a unique opportunity to evaluate its safety and efficacy in patients with ARHR1. RESULTS: Monthly administration of burosumab to 2 brothers afflicted with the disorder resulted in normalization of serum phosphate, healing of pseudofracture, diminished fatigue, less bone pain, and reduced incapacity arising from the extensive enthesopathy and soft tissue fibrosis/calcification that characterizes this disorder. No adverse effects were reported following burosumab administration. CONCLUSION: The present report highlights the beneficial biochemical and clinical outcomes associated with the use of burosumab in patients with ARHR1.


Subject(s)
Bone Diseases, Metabolic , Enthesopathy , Familial Hypophosphatemic Rickets , Osteomalacia , Rickets, Hypophosphatemic , Antibodies, Monoclonal, Humanized/therapeutic use , Calcitriol/therapeutic use , Familial Hypophosphatemic Rickets/drug therapy , Familial Hypophosphatemic Rickets/genetics , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Hormones/therapeutic use , Humans , Male , Osteomalacia/metabolism , Phosphates/metabolism , Rickets, Hypophosphatemic/drug therapy , Rickets, Hypophosphatemic/genetics
3.
Eur J Cancer ; 185: 178-215, 2023 05.
Article in English | MEDLINE | ID: covidwho-2260665

ABSTRACT

BACKGROUND: Innovations in imaging and molecular characterisation together with novel treatment options have improved outcomes in advanced prostate cancer. However, we still lack high-level evidence in many areas relevant to making management decisions in daily clinical practise. The 2022 Advanced Prostate Cancer Consensus Conference (APCCC 2022) addressed some questions in these areas to supplement guidelines that mostly are based on level 1 evidence. OBJECTIVE: To present the voting results of the APCCC 2022. DESIGN, SETTING, AND PARTICIPANTS: The experts voted on controversial questions where high-level evidence is mostly lacking: locally advanced prostate cancer; biochemical recurrence after local treatment; metastatic hormone-sensitive, non-metastatic, and metastatic castration-resistant prostate cancer; oligometastatic prostate cancer; and managing side effects of hormonal therapy. A panel of 105 international prostate cancer experts voted on the consensus questions. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: The panel voted on 198 pre-defined questions, which were developed by 117 voting and non-voting panel members prior to the conference following a modified Delphi process. A total of 116 questions on metastatic and/or castration-resistant prostate cancer are discussed in this manuscript. In 2022, the voting was done by a web-based survey because of COVID-19 restrictions. RESULTS AND LIMITATIONS: The voting reflects the expert opinion of these panellists and did not incorporate a standard literature review or formal meta-analysis. The answer options for the consensus questions received varying degrees of support from panellists, as reflected in this article and the detailed voting results are reported in the supplementary material. We report here on topics in metastatic, hormone-sensitive prostate cancer (mHSPC), non-metastatic, castration-resistant prostate cancer (nmCRPC), metastatic castration-resistant prostate cancer (mCRPC), and oligometastatic and oligoprogressive prostate cancer. CONCLUSIONS: These voting results in four specific areas from a panel of experts in advanced prostate cancer can help clinicians and patients navigate controversial areas of management for which high-level evidence is scant or conflicting and can help research funders and policy makers identify information gaps and consider what areas to explore further. However, diagnostic and treatment decisions always have to be individualised based on patient characteristics, including the extent and location of disease, prior treatment(s), co-morbidities, patient preferences, and treatment recommendations and should also incorporate current and emerging clinical evidence and logistic and economic factors. Enrolment in clinical trials is strongly encouraged. Importantly, APCCC 2022 once again identified important gaps where there is non-consensus and that merit evaluation in specifically designed trials. PATIENT SUMMARY: The Advanced Prostate Cancer Consensus Conference (APCCC) provides a forum to discuss and debate current diagnostic and treatment options for patients with advanced prostate cancer. The conference aims to share the knowledge of international experts in prostate cancer with healthcare providers worldwide. At each APCCC, an expert panel votes on pre-defined questions that target the most clinically relevant areas of advanced prostate cancer treatment for which there are gaps in knowledge. The results of the voting provide a practical guide to help clinicians discuss therapeutic options with patients and their relatives as part of shared and multidisciplinary decision-making. This report focuses on the advanced setting, covering metastatic hormone-sensitive prostate cancer and both non-metastatic and metastatic castration-resistant prostate cancer. TWITTER SUMMARY: Report of the results of APCCC 2022 for the following topics: mHSPC, nmCRPC, mCRPC, and oligometastatic prostate cancer. TAKE-HOME MESSAGE: At APCCC 2022, clinically important questions in the management of advanced prostate cancer management were identified and discussed, and experts voted on pre-defined consensus questions. The report of the results for metastatic and/or castration-resistant prostate cancer is summarised here.


Subject(s)
COVID-19 , Prostatic Neoplasms, Castration-Resistant , Male , Humans , Prostatic Neoplasms, Castration-Resistant/pathology , Diagnostic Imaging , Hormones
4.
J Intern Med ; 292(4): 604-626, 2022 10.
Article in English | MEDLINE | ID: covidwho-2282812

ABSTRACT

Vitamin D, when activated to 1,25-dihydroxyvitamin D, is a steroid hormone that induces responses in several hundred genes, including many involved in immune responses to infection. Without supplementation, people living in temperate zones commonly become deficient in the precursor form of vitamin D, 25-hydroxyvitamin D, during winter, as do people who receive less sunlight exposure or those with darker skin pigmentation. Studies performed pre-COVID-19 have shown significant but modest reduction in upper respiratory infections in people receiving regular daily vitamin D supplementation. Vitamin D deficiency, like the risk of severe COVID-19, is linked with darker skin colour and also with obesity. Greater risk from COVID-19 has been associated with reduced ultraviolet exposure. Various studies have examined serum 25-hydroxyvitamin D levels, either historical or current, in patients with COVID-19. The results of these studies have varied but the majority have shown an association between vitamin D deficiency and increased risk of COVID-19 illness or severity. Interventional studies of vitamin D supplementation have so far been inconclusive. Trial protocols commonly allow control groups to receive low-dose supplementation that may be adequate for many. The effects of vitamin D supplementation on disease severity in patients with existing COVID-19 are further complicated by the frequent use of large bolus dose vitamin D to achieve rapid effects, even though this approach has been shown to be ineffective in other settings. As the pandemic passes into its third year, a substantial role of vitamin D deficiency in determining the risk from COVID-19 remains possible but unproven.


Subject(s)
COVID-19 , Vitamin D Deficiency , Dietary Supplements , Hormones , Humans , Sunlight , Vitamin D , Vitamin D Deficiency/complications , Vitamin D Deficiency/epidemiology , Vitamins/therapeutic use
5.
Int J Mol Sci ; 24(3)2023 Jan 31.
Article in English | MEDLINE | ID: covidwho-2240263

ABSTRACT

We are all exposed to endocrine-disrupting chemicals (EDCs) starting from embryonic life. The fetus and child set up crucial developmental processes allowing adaptation to the environment throughout life: they are extremely sensitive to very low doses of hormones and EDCs because they are developing organisms. Considering the developmental origin of well-being and diseases, every adult organism expresses consequences of the environment in which it developed. The molecular mechanisms through which the main EDCs manifest their effects and their potential association with endocrine disorders, such as diabetes, obesity, thyroid disease and alteration of adrenal hormones, will be reviewed here. Despite 40 years having passed since the first study on EDCs, little is yet known about them; therefore, our purpose is to take stock of the situation to establish a starting point for further studies. Since there is plenty of evidence showing that exposure to EDCs may adversely impact the health of adults and children through altered endocrine function-suggesting their link to endocrinopathies-it is essential in this context to bear in mind what is already known about endocrine disruptors and to deepen our knowledge to establish rules of conduct aimed at limiting exposure to EDCs' negative effects. Considering that during the COVID-19 pandemic an increase in endocrine disruptor effects has been reported, it will also be useful to address this new phenomenon for better understanding its basis and limiting its consequences.


Subject(s)
COVID-19 , Endocrine Disruptors , Child , Adult , Humans , Endocrine Disruptors/toxicity , Child Health , Pandemics , Hormones
6.
Nutrients ; 15(1)2022 Dec 30.
Article in English | MEDLINE | ID: covidwho-2239535

ABSTRACT

This year we are celebrating 100 years of the naming of vitamin D, but the molecule is, in fact, more than one billion years old [...].


Subject(s)
Vitamin D Deficiency , Vitamin D , Humans , Infant , Vitamins , Hormones
7.
Toxicol Appl Pharmacol ; 456: 116284, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2086745

ABSTRACT

Genetic and environmental factors impact on the interindividual variability of susceptibility to communicable and non-communicable diseases. A class of ubiquitous chemicals, Per- and polyfluoroalkyl substances (PFAS) have been linked in epidemiological studies to immunosuppression and increased susceptibility to viral infections, but possible mechanisms are not well elucidated. To begin to gain insight into the role of PFAS in susceptibility to one such viral infection, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), male and female C57BL/6 J mice were exposed to control water or a mixture of 5 PFAS (PFOS, PFOA, PFNA, PFHxS, Genx) for 12 weeks and lungs were isolated for examination of expression of SARS-CoV-2-related receptors Angiotensin-Converting Enzyme 2 (ACE2) and others. Secondary analyses included circulating hormones and cytokines which have been shown to directly or indirectly impact on ACE2 expression and severity of viral infections. Changes in mRNA and protein expression were analyzed by RT-qPCR and western blotting and circulating hormones and cytokines were determined by ELISA and MESO QuickPlex. The PFAS mixture decreased Ace2 mRNA 2.5-fold in male mice (p < 0.0001), with no significant change observed in females. In addition, TMPRSS2, ANPEP, ENPEP and DPP4 (other genes implicated in COVID-19 infection) were modulated due to PFAS. Plasma testosterone, but not estrogen were strikingly decreased due to PFAS which corresponded to PFAS-mediated repression of 4 representative pulmonary AR target genes; hemoglobin, beta adult major chain (Hbb-b1), Ferrochelatase (Fech), Collagen Type XIV Alpha 1 Chain (Col14a1), 5'-Aminolevulinate Synthase 2 (Alas2). Finally, PFAS modulated circulating pro and anti-inflammatory mediators including IFN-γ (downregulated 3.0-fold in females; p = 0.0301, 2.1-fold in males; p = 0.0418) and IL-6 (upregulated 5.6-fold in males; p = 0.030, no change in females). In conclusion, our data indicate long term exposure to a PFAS mixture impacts mechanisms related to expression of ACE2 in the lung. This work provides a mechanistic rationale for important future studies of PFAS exposure and subsequent viral infection.


Subject(s)
COVID-19 , Fluorocarbons , Male , Female , Mice , Animals , Angiotensin-Converting Enzyme 2 , SARS-CoV-2 , Fluorocarbons/toxicity , Cytokines , Mice, Inbred C57BL , Lung , Hormones , RNA, Messenger
8.
Int J Mol Sci ; 23(20)2022 Oct 14.
Article in English | MEDLINE | ID: covidwho-2071508

ABSTRACT

The highly transmittable and infectious COVID-19 remains a major threat worldwide, with the elderly and comorbid individuals being the most vulnerable. While vaccines are currently available, therapeutic drugs will help ease the viral outbreak and prevent serious health outcomes. Epigenetic modifications regulate gene expression through changes in chromatin structure and have been linked to viral pathophysiology. Since epigenetic modifications contribute to the life cycle of the virus and host immune responses to infection, epigenetic drugs are promising treatment targets to ameliorate COVID-19. Deficiency of the multifunctional secosteroid hormone vitamin D is a global health threat. Vitamin D and its receptor function to regulate genes involved in immunity, apoptosis, proliferation, differentiation, and inflammation. Amassed evidence also indicates the biological relations of vitamin D with reduced disease risk, while its receptor can be modulated by epigenetic mechanisms. The immunomodulatory effects of vitamin D suggest a role for vitamin D as a COVID-19 therapeutic agent. Therefore, this review highlights the epigenetic effects on COVID-19 and vitamin D while also proposing a role for vitamin D in COVID-19 infections.


Subject(s)
COVID-19 , Vitamin D Deficiency , Humans , Aged , Vitamin D/pharmacology , Vitamin D/therapeutic use , Vitamin D/metabolism , SARS-CoV-2 , Vitamins/pharmacology , Vitamins/therapeutic use , Vitamin D Deficiency/complications , Vitamin D Deficiency/genetics , Vitamin D Deficiency/drug therapy , Epigenesis, Genetic , Hormones , Chromatin
9.
Biosensors (Basel) ; 12(10)2022 Oct 05.
Article in English | MEDLINE | ID: covidwho-2065703

ABSTRACT

Human tear film, with a flow rate of 1-3 µL/min, is a rich bodily fluid that transmits a variety of metabolites and hormones containing proteins, lipids and electrolytes that provide clues about ocular and systemic diseases. Analysis of disease biomarkers such as proteins, mRNA, enzymes and cytokines in the tear film, collected by noninvasive methods, can provide significant results for sustaining a predictive, preventive and personalized medicine regarding various diseases such as glaucoma, diabetic retinopathy, keratoconus, dry eye, cancer, Alzheimer's disease, Parkinson's disease and COVID-19. Electrochemical impedance spectroscopy (EIS) offers a powerful technique for analyzing these biomarkers. EIS detects electrical equivalent circuit parameters related to biorecognition of receptor-analyte interactions on the electrode surface. This method is advantageous as it performs a label-free detection and allows the detection of non-electroactive compounds that cannot be detected by direct electron transfer, such as hormones and some proteins. Here, we review the opportunities regarding the integration of EIS into tear fluid sampling approaches.


Subject(s)
COVID-19 , Dielectric Spectroscopy , Humans , Dielectric Spectroscopy/methods , Biomarkers , Cytokines , Lipids , Hormones , RNA, Messenger
10.
Anticancer Res ; 42(10): 5027-5034, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2056773

ABSTRACT

Official public health pronouncements about sun exposure and vitamin D can be summarized as follows: First, there is no such thing as a safe tan. Therefore, avoid exposing the skin to sunshine. Second, in the absence of sunshine, a daily intake of 800 IU/day (20 mcg/d) vitamin D or less is sufficient for the health needs of almost all members of the population. However, exposure of the skin to sunlight induces multiple mechanisms that lower blood pressure, while also initiating production of vitamin D, which is needed to produce a hormone that regulates multiple systems including the cellular biology that affects cancer mortality. Disease-prevention relationships point to a beneficial threshold for serum 25-hydroxyvitamin D [25(OH)D; the index of vitamin D nutrition] that is at least 75 nmol/l (30 ng/ml). To ensure the threshold for all adults, an average per-day minimum total input of vitamin D3 from sunshine/UVB exposure, and/or from food (natural food like fish or fortified food like milk), and/or vitamin supplementation of at least 4,000 IU/d (100 mcg/d) is required. Strong, although not Level-1, evidence indicates that the maintenance of that threshold will lower mortality overall, lower mortality from cancer, and lower the risk of certain other diseases such as respiratory infection and COVID-19.


Subject(s)
COVID-19 , Neoplasms , Vitamin D Deficiency , Animals , Cholecalciferol , Dietary Supplements , Hormones , Neoplasms/prevention & control , Public Health , Sunlight/adverse effects , Triacetoneamine-N-Oxyl , Vitamin D/therapeutic use , Vitamins/therapeutic use
11.
mBio ; 13(5): e0165022, 2022 10 26.
Article in English | MEDLINE | ID: covidwho-2053125

ABSTRACT

Bacteria have evolved many different signal transduction systems to sense and respond to changing environmental conditions. Signal integration is mainly achieved by signal recognition at extracytosolic ligand-binding domains (LBDs) of receptors. Hundreds of different LBDs have been reported, and our understanding of their sensing properties is growing. Receptors must function over a range of environmental pH values, but there is little information available on the robustness of sensing as a function of pH. Here, we have used isothermal titration calorimetry to determine the pH dependence of ligand recognition by nine LBDs that cover all major LBD superfamilies, of periplasmic solute-binding proteins, and cytosolic LBDs. We show that periplasmic LBDs recognize ligands over a very broad pH range, frequently stretching over eight pH units. This wide pH range contrasts with a much narrower pH response range of the cytosolic LBDs analyzed. Many LBDs must be dimeric to bind ligands, and analytical ultracentrifugation studies showed that the LBD of the Tar chemoreceptor forms dimers over the entire pH range tested. The pH dependences of Pseudomonas aeruginosa motility and chemotaxis were bell-shaped and centered at pH 7.0. Evidence for pH robustness of signaling in vivo was obtained by Förster Resonance Energy Transfer (FRET) measurements of the chemotaxis pathway responses in Escherichia coli. Bacteria have evolved several strategies to cope with extreme pH, such as periplasmic chaperones for protein refolding. The intrinsic pH resistance of periplasmic LBDs appears to be another strategy that permits bacteria to survive under adverse conditions. IMPORTANCE Demonstration of the pH robustness of extracytoplasmic sensing reveals a previously undescribed evolutionary mechanism that enables bacteria to monitor environmental changes under changing conditions. This mechanism includes the maintenance of the dimeric state of four-helixbundle ligand-binding domains (LBDs). The construction of biosensors is a rapidly growing field of research, and their use to monitor the progression of the COVID-19 pandemic has impressively demonstrated their usefulness. LBDs represent an enormous reservoir of binding modules that can be used to create novel biosensors. Among ligands recognized by LBDs are neurotransmitters, hormones, and quorum-sensing signals. The demonstration that extracytosolic LBDs bind their signals over a wide range of pH values will facilitate the design of biosensors that function under highly variable conditions of acidity and alkalinity.


Subject(s)
Bacterial Proteins , COVID-19 , Humans , Ligands , Bacterial Proteins/metabolism , Protein Binding , Pandemics , Chemotaxis , Bacteria/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Hormones/metabolism , Hydrogen-Ion Concentration
12.
Talanta ; 251: 123813, 2023 Jan 01.
Article in English | MEDLINE | ID: covidwho-2049950

ABSTRACT

Currently, the coronavirus disease 2019 (COVID-19) pandemic is ravaging the world, causing serious crisis in economy and human health. The top priority is the detection and drug development of the novel coronavirus. The gold standard for real-time diagnosis of coronavirus disease is the reverse transcription-polymerase chain reaction (RT-PCR), which is usually operatively complex and time-consuming. Biosensors are known for their low cost and rapid detection, which are developing rapidly in detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The current study showed that the spike protein of SARS-CoV-2 will bind to angiotensin-converting hormone 2 (ACE2) to mediate the entry of the virus into cells. Interestingly, the affinity between ACE2 and SARS-CoV-2 spike protein increases with the mutation of the virus. Using ACE2 as a biosensor recognition receptor to detect SARS-CoV-2 will effectively avoid the decline of detection accuracy and false negative caused by variants. In fact, due to the variation of the virus, it may even lead to enhanced detection performance. In addition, ACE2-specific drugs to prevent SARS-CoV-2 from entering cells will be effectively evaluated using the biosensors even with virus mutations. Here, we reviewed the biosensors for rapid detection of SARS-CoV-2 by ACE2 and discussed the advantages of ACE2 as an antibody for the detection of SARS-CoV-2 variants. The review also discussed the value of ACE2-based biosensors for screening for drugs that modulate the interaction between ACE2 and SARS-CoV-2.


Subject(s)
Biosensing Techniques , COVID-19 , Angiotensin-Converting Enzyme 2 , Angiotensins , COVID-19/diagnosis , Hormones , Humans , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Protein Binding , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
13.
Prog Urol ; 32(16): 1431-1439, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2031645

ABSTRACT

BACKGROUND: Impaired semen quality and reproductive hormone levels were observed in patients during and after recovery from coronavirus disease 2019 (COVID-19), which raised concerns about negative effects on male fertility. Therefore, this study systematically reviews available data on semen parameters and sex hormones in patients with COVID-19. METHODS: Systematic search was performed on PubMed and Google Scholar until July 18th, 2022. We identified relevant articles that discussed the effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on male fertility. RESULTS: A total number of 1,684 articles were identified by using a suitable keyword search strategy. After screening, 26 articles were considered eligible for inclusion in this study. These articles included a total of 1,960 controls and 2,106 patients. When all studies were considered, the results showed that the semen parameters and sex hormone levels of patients infected with SARS-CoV-2 exhibited some significant differences compared with controls. Fortunately, these differences gradually disappear as patients recover from COVID-19. CONCLUSION: While present data show the negative effects of SARS-CoV-2 infection on male fertility, this does not appear to be long-term. Semen quality and hormone levels will gradually increase to normal as patients recover.


Subject(s)
COVID-19 , Humans , Male , SARS-CoV-2 , Semen , Semen Analysis , Gonadal Steroid Hormones , Hormones
14.
Curr Pharm Des ; 28(32): 2664-2676, 2022.
Article in English | MEDLINE | ID: covidwho-2009796

ABSTRACT

Heat shock protein 90 (Hsp90) is a chaperone protein that prevents many other proteins from aggregating by folding them in a certain way. Hsp90 consists of three structural domains: N-terminal, middle and C-terminal domains. Hsp90 has many activities in numerous proteins and signaling pathways like chimeric fusion proteins, steroid hormone receptors, tumor suppressor genes, and cell cycle regulatory proteins. The role of Hsp90 is not only in cancer but also in other diseases like COVID-19, leishmaniasis, diabetes, flavi virus, systemic sclerosis, grass carp reovirus, psoriasis, malaria, cardiac fibrosis, and alcohol-related liver diseases. This review is a compilation of the pharmacological profile of Hsp90 inhibitors, problems associated with them, and suggested remedies for the same.


Subject(s)
Benzoquinones , COVID-19 , Humans , Lactams, Macrocyclic , Macrolides , HSP90 Heat-Shock Proteins/metabolism , Cell Cycle Proteins , Steroids , Hormones
15.
Medicine (Baltimore) ; 101(33): e30066, 2022 Aug 19.
Article in English | MEDLINE | ID: covidwho-2001504

ABSTRACT

RATIONALE: Although coronavirus disease 2019 (COVID-19) remains a global threat, administering effective and safe vaccines is currently the most promising strategy to curb the ongoing pandemic and decrease the number of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. However, there remains some uncertainty regarding the safety of vaccines for patients with kidney disease. PATIENT CONCERNS: A 58-year-old man presented at our institution with gross hematuria 48 hours after receiving his first dose of the CoronaVac (Sinovac) vaccine. DIAGNOSES: Analysis of a renal biopsy sample led to the diagnosis of crescentic immunoglobulin A nephropathy (IgAN), which we considered an adverse event of receiving the CoronaVac vaccine in China. INTERVENTIONS: The patient's serum creatinine and albumin levels were 1.20 mg/dL and 31.3 g/L, respectively; as such, he was administered a diuretic. His serum creatinine level had risen to 7.45 mg/dL 1 month later, and he developed high blood pressure. The patient then received conventional doses of hormone therapy but developed recurrent fever, which led to the suspicion of active tuberculosis (which he had a history of) and suspension of the hormone therapy. OUTCOMES: The patient's renal function deteriorated further, and he ultimately underwent dialysis. LESSONS: The patient's course of events of apparent IgAN exacerbation should prompt nephrologists to closely follow patients with glomerular disease after they receive a COVID-19 vaccine, especially if persistent gross hematuria occurs.


Subject(s)
COVID-19 , Glomerulonephritis, IGA , COVID-19/prevention & control , COVID-19 Vaccines , Creatinine , Glomerulonephritis, IGA/diagnosis , Hematuria/etiology , Hormones , Humans , Male , Middle Aged , Renal Dialysis , SARS-CoV-2
17.
Am J Mens Health ; 16(4): 15579883221115593, 2022.
Article in English | MEDLINE | ID: covidwho-1993293

ABSTRACT

Due to the COVID-19 pandemic, major congresses and many teaching opportunities as well as the usual visits from medical advisors of pharmaceutical firms have been postponed and canceled. The major trials of prostate cancer in the last 5 years in each state are shortly discussed providing a panoramic overview of the available evidence and data on prostate cancer treatment. Apalutamide, enzalutamide, and darolutamide have proven to have clinical benefits when added to androgen deprivation therapy for patients with nonmetastatic castration-resistant prostate cancer. In patients in the metastatic hormone-sensitive setting, next to docetaxel, abiraterone, enzalutamide, and apalutamide have been shown to significantly improve overall survival and progression-free survival in comparison to standard hormone therapy. In addition, docetaxel abiraterone and enzalutamide are widely used in the metastatic setting. For second-line therapy of metastasized prostate cancer patients who have received either docetaxel or abiraterone or enzalutamide, olaparib, cabazitaxel, radium, and lutetium therapy have been shown to be beneficial in selected patient groups.


Subject(s)
COVID-19 , Prostatic Neoplasms, Castration-Resistant , Androgen Antagonists/therapeutic use , Docetaxel/therapeutic use , Hormones , Humans , Male , Pandemics , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/pathology , Treatment Outcome
18.
BMJ Case Rep ; 15(8)2022 Aug 17.
Article in English | MEDLINE | ID: covidwho-1992987

ABSTRACT

A woman in her 50s with Turner syndrome was referred to the endocrine clinic, having been unaware of her diagnosis until she received a shielding letter from the UK government during the COVID-19 pandemic. Despite a neonatal diagnosis of Turner syndrome on her general practitioner record and despite having undergone laparoscopic examination for absent puberty and primary amenorrhoea aged 18 years, she had not received any prior hormone treatment or cardiovascular screening.Though Turner syndrome is rare, recent data from the UK Biobank suggest that it may be underdiagnosed. Clinicians should be aware of the clinical features and associated complications of Turner syndrome to avoid delayed diagnosis and missed opportunities for treatment.In this report, we discuss the clinical features of this rare syndrome and current guidelines for screening and treatment. We stress the importance of peer-to-peer support and information sharing through patient-led groups, such as the Turner Syndrome Support Society.


Subject(s)
COVID-19 , Turner Syndrome , Female , Hormones , Humans , Infant, Newborn , Pandemics , Turner Syndrome/complications , Turner Syndrome/diagnosis , Turner Syndrome/therapy
19.
Environ Sci Pollut Res Int ; 29(45): 67685-67703, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1982295

ABSTRACT

The 2019 outbreak of corona virus disease began from Wuhan (China), transforming into a leading pandemic, posing an immense threat to the global population. The WHO coined the term nCOVID-19 for the disease on 11th February, 2020 and the International Committee of Taxonomy of Viruses named it SARS-CoV-2, on account of its similarity with SARS-CoV-1 of 2003. The infection is associated with fever, cough, pneumonia, lung damage, and ARDS along with clinical implications of lung opacities. Brief understanding of the entry target of virus, i.e., ACE2 receptors has enabled numerous treatment options as discussed in this review. The manuscript provides a holistic picture of treatment options in COVID-19, such as non-specific anti-viral drugs, immunosuppressive agents, anti-inflammatory candidates, anti-HCV, nucleotide inhibitors, antibodies and anti-parasitic, RNA-dependent RNA polymerase inhibitors, anti-retroviral, vitamins and hormones, JAK inhibitors, and blood plasma therapy. The text targets to enlist the investigations conducted on all the above categories of drugs, with respect to the COVID-19 pandemic, to accelerate their significance in hindering the disease progression. The data collected primarily targets recently published articles and most recent records of clinical trials, focusing on the last 10-year database. The current review provides a comprehensive view on the critical need of finding a suitable treatment for the currently prevalent COVID-19 disease, and an opportunity for the researchers to investigate the varying possibilities to find and optimized treatment approach to mitigate and ameliorate the chaos created by the pandemic worldwide.


Subject(s)
COVID-19 , Janus Kinase Inhibitors , Angiotensin-Converting Enzyme 2 , Anti-Inflammatory Agents , Hormones , Humans , Nucleotides , Pandemics , RNA-Dependent RNA Polymerase , SARS-CoV-2 , Vitamins
20.
Infect Genet Evol ; 103: 105338, 2022 09.
Article in English | MEDLINE | ID: covidwho-1936988

ABSTRACT

Multiple lines of evidence indicate that the male sex is a significant risk factor for severe disease and mortality due to coronavirus disease 2019 (COVID-19). However, the precise explanation for the discrepancy is currently unclear. Immunologically, the female-biased protection against COVID-19 could presumably be due to a more rapid and robust immune response to viruses exhibited by males. The female hormones, e.g., estrogens and progesterone, may have protective roles against viral infections. In contrast, male hormones, e.g., testosterone, can act oppositely. Besides, the expression of the ACE-2 receptor in the lung and airway lining, which the SARS-CoV-2 uses to enter cells, is more pronounced in males. Estrogen potentially plays a role in downregulating the expression of ACE-2, which could be a plausible biological explanation for the reduced severity of COVID-19 in females. Comorbidities, e.g., cardiovascular diseases, diabetes, and kidney disorders, are considered significant risk factors for severe outcomes in COVID-19. Age-adjusted data shows that males are statistically more predisposed to these morbidities-amplifying risks for males with COVID-19. In addition, many sociocultural factors and gender-constructed behavior of men and women impact exposure to infections and outcomes. In many parts of the world, women are more likely to abide by health regulations, e.g., mask-wearing and handwashing, than men. In contrast, men, in general, are more involved with high-risk behaviors, e.g., smoking and alcohol consumption, and high-risk jobs that require admixing with people, which increases their risk of exposure to the infection. Overall, males and females suffer differently from COVID-19 due to a complex interplay between many biological and sociocultural factors.


Subject(s)
COVID-19 , Virus Diseases , COVID-19/epidemiology , Female , Hormones , Humans , Male , Risk Factors , SARS-CoV-2 , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL